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Abstract

The instability of the shear layer separated from a circular cylinder is studied with the Reynolds number (Re) of 3000

~10* by numerically solving the two-dimensional Navier-Stokes equations. In the wake of the cylinder, primary vortex shedding with nat-

ural frequency foccurs, and the mstability of the shear layer with frequency f, develops, which leads to mixing layer eddies and interacts

with the primary shedding vortices. However, there remains some uncertainties regarding to the vaniation of the shear layer characteristic

frequency with the Reynolds number. Based on the previous experimental work, several relationships of £/ f, with Re has been proposed
including £/ f.~ Re” 3 by Bloor, fi/ fs~ Re"® by Wei and Smith and f./f.~ Re® ® by Prasad and Williamson. The objective of this
study is to predict reasonably the relation of the shear layer instability frequency with the Reynolds number based on the present accurate

calculation with the high-order schemes and high-resolution spectrum analysis. According to our calculated results, a variation for the nor-

malized shear-layer frequency of the form £,/ fs~ Re® ¥ is predicted numerically, which 15 1n good agreement with a recent experimental

067

measurement of Re and physical prediction of Re” 7.
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The study of the transition to turbulence and the
wake formation behind a bluff body has received a
great deal of attention owing mainly to its theoretical
and practical significance. Although a number of in-
vestigations[1‘2] have addressed the transition and in-
stability of the shear layer separating from a circular

cylinder, there remains some uncertainty regarding

the shear layer characteristic frequency. In particu-
lar, the variation of the shear layer characteristic fre-
quency with the Reynolds number has a surprising
scatter in the literature.

Over the past decades, some investigations have
addressed diverse aspects of shear-layer instability.
Roshko!®! first observed experimentally the existence
of a transition regime in the wake of the cylinder and
found distinct irregularities in the wake velocity fluc-
tuation. He showed that there exist three different

regimes of the flow at low to moderate Reynolds

number, which are the laminar, transition and irreg-
ular turbulent regimes. Then Bloor'*! carried out the
systematic measurements of the characteristic fre-
quency associated with the shear-layer instability
(f.), in analogy with the instability observed in wall
boundary layers. Subsequent investigators have used a

variety of terminology including the Kelvin-Helmholtz
frequency and the secondary frequency. Based on pa-
rameter variations similar to those of laminar bound-
ary layers, Bloor!*! suggested that f./ f, should scale
with Re%®, where f. represents the Karman vortex
shedding frequency. Since then, other investigators
including Wei and Smith!®!, Kourta et al.'®!, Nor-
bergm and Fey et al. (8] have measured the shear-lay-
er frequency. Many of these investigators attempted
to fit their data to the Re®® variation, although an
examination of their actual data points does not sup-
port such a variation. Wei and Smith!®! found that
the normalized shear-layer frequency £,/ f, varies with
Re® 77 from hot-wire measurements and with Re® ¥
from flow visualization. They surmised that the for-
mer technique of measurement would inherently result
in lower values of the shear-layer frequency, because
the intermittent shear-layer fluctuations produce spu-
rious peaks in the spectrum in the frequency domain.
Norbergm suggested that a single power law may not
represent the variation of f,/f, over the entire
Reynolds number ranging up to Re = 10° and found
that a local maximum in the exponent occurs at Re =
5000. Recently, Prasad and Williamson!®> 1 per-
formed experiments to investigate the instability of
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the shear layer separating from a circular cylinder,
and carried out a least-squares analysis by using both
their experimental data and all of the previously avail-
able data to produce a variation of f./fs~ Re®® . It
therefore appears from the above discussion that the
variation of the normalized shear-layer frequency with
remains an unresolved

the Reynolds number

problem.

A large number of numerical studies have been
devoted to the analysis of the unsteady flow around a
circular cylinder with the low and moderate Reynolds

number regimesl11 16

! However, very little numeri-
cal investigation has been performed on the instability
of the shear layer separating from the sides of a circu-
lar cylinder. Braza et al.['"! first calculated the two-
dimensional Navier-Stokes equations to illustrate the
generation of the mixing layer vortices in the separat-
ed shear layers past the circular cylinder and assessed
their shedding frequency related to the fundamental
frequency in the Reynolds number of 2000 ~ 10*.
They proposed f,/ f. varies with Re®>, which is con-

sistent with the prediction by Bloor™!.

18]

Recently,
Ling et al. '8 solved the two-dimensional Navier-
Stokes equations by using vortex method and finite-
difference method at Re = 3000 ~ 10* and predicted
the behavior of the normalized shear-layer frequency
f./ f« varying with Re”® . On the other hand, based
on simple physical arguments that account for the
variation of the characteristic velocity and length
scales of the shear layer, Prasad and Williamson'? %)
predicted a variation for the normalized shear-layer
frequency of the form Re’’. Furthermore, it is pos-
sible to predict the existence of an absolute instability
by the linear stability theory, but there is no theoreti-
cal study concerning the development of the shear-
layer instability in the near wake of the circular cylin-
der. Thus, the reasonable prediction of the variation
of the normalized shear-layer frequency with the
Reynolds number is still needed through an accurate

numerical calculation.

Here, we firstl discuss the basic physical mecha-
nisms of the instability of the shear layer separated
from a circular cylinder, which provides some guid-
ance to our computation. The shear layer separated
from a cylinder becomes unstable at Re ~ 10°. The
shear layer instability due to the action of a Kelvin-
Helmholtz mechanism has a length scale of the thick-
ness of the separating shear layer, which is generally
smaller than the characterized length (e.g. the cylin-

der diameter). Consequently, the length and time
scales of the shear layer instability are much smaller
than those of the wake instability. As argued by

(191" the shear layer instability necessarily

Williamson
needs to develop and to then undergo significant am-
plification before the shear layer rolls up to form the
primary vortex. Thus, a critical Reynolds number
Re,, below which shear layer instability would not be
perceived, may occur. Based on the experiments in
Prasad and Williamson'® '), it has been found that
Re ~= 1200 for parallel shedding conditions along a
three-dimensional cylinder, whereas Re. = 2600 for
oblique shedding conditions. In the present calcula-
tion, in order to capture the shear layer frequency ef-
ficiently, we choose the Reynolds number ranging

from 3000 to 10*.

On the other hand, there still remains an impor-
tant question regarding the spanwise structure of the
shear-layer instability, in particular on whether the
shear layer instability waves are always parallel to the
axis of the cylinder, or if indeed the waves adopt the
spanwise structure of the Karman vortices. From the
experiments performed by Prasad and
[9.10] "t is found that the instability of the
separated shear layer is on the whole two-dimensional

recent
Williamson

along the span, this is in agreement with the sugges-
tion of Braza et al.!'7!. It, therefore, appears that
the most unstable mode in the shear layer is two-di-
mensional, despite the fact that the base flow may be
in the parallel shedding case or in the oblique shed-
ding case. Thus, the two-dimensional Navier-Stokes
equations are calculated to deal with the shear-layer
instability and the normalized shear-layer frequency.

A numerical study of the instability of the shear
layer separating from the sides of a circular cylinder is
performed to accurately predict the normalized shear-
layer frequency with the Reynolds number by solving
the two-dimensional incompressible Navier-Stokes e-
quations. A second-order accurate in time fractional
step method is employed to advance temporal deriva-

200 and

tive, and a third-order biased-upwind scheme'
a fourth-order central scheme approximations are used
to discretize the convective terms and viscous terms,
respectively. To accurately identify the frequencies, a
high-resolution power spectrum analysis is used to
capture the frequencies. According to our calculated
results, the normalized shear-layer frequencies and

the flow patterns are analyzed and discussed.
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1 Mathematical formulation

The governing equations are the two-dimensional
incompressible Navier-Stokes equations. To non-di-
mensionalize the governing equations, we use the ra-
dius of the cylinder R as the length scale; the uni-
form free-stream velocity U as the velocity scale.
Then the non-dimensional governing equations are
given in polar coordinates (r, 8) as follows:

ou  u , 1ov
8r+r+r8(9~0’ (1)
ou Qu, du v
o T4 T V00,
_QE _2_ 2 _l_vgl
=T TRAVY T 200 2 2
Q_y+ua_v+va_v+uv

ot or rod r

__2b ;(2 20u_w
a r80+Revv+rZa(9 rz’(3)

where Re =2UR/v, v is the kinematic viscosity; u

and v are the dimensionless radial and circumferential
velocity components, respectively; p is the dimen-
sionless pressure; and the Laplace operator, V2, is

92 18 1 &°
R >SN S © . S
v ar2+ ror 2 ag* (4)

In the present calculation, we use the no-slip and
no-penetration boundary conditions for velocity on the
wall of the cylinder. Far from the cylinder, we use
the Neumann boundary condition because the far field
boundary is sufficiently far from the cylinder so that
the effect of the cylinder is neglected. In the circum-
ferential direction, we use periodic boundary condi-
tions.

2 Numerical methods

To describe the numerical method clearly, the
Navier-Stokes equations are written in vector form,

oV

ot

where V is the velocity vector, N represents the con-

=-Vp+L+N, (5

vective terms and L denotes the viscous terms.

A fractional step method is employed to dis-
cretize the governing equations in time. In this ap-
proach, we first obtain an intermediate velocity, V,
by omitting pressure and using the second-order
Adams-Bashforth scheme on the convective terms and
the Crank-Nicolson scheme on the viscous terms,

Y__—‘/"___L n _ n—1 L n
IV 2(3N N )+2L, (6)

where the superscripts refer to the time step. This in-

termediate velocity is corrected by pressure to obtain a
second intermediate velocity, V, from

v-v n+1/2
A, Ve . (7)
Finally, the velocity at time step n + 1 is obtained
from
M _ L n+l
a2 (8)

To determine the pressure p, we apply the con-
tinuity equation, which must be satisfied at the end of
each complete time step. So, we take the divergence
of Eq. (8) to get

V-V =0. (9)
Then, we take the divergence of Eq. (7) and apply
Eq.(9) to get
V-V
Ar
where p" /2 is obtained through Eq. (10) and with
the solution for V from Eq.(6). Then V and V7!
can be calculated from Egs. (7) and (8). No bound-

ary conditions are necessary for either of the two in-

Vzpn+l/2 — (10)

termediate velocities, and the boundary conditions on
velocity are applied to get the velocity at the next
time step.

By solving Eq. (10), a pressure boundary condi-
tion must be implemented. To control the time-split-
ting error, we use the consistent scheme developed by
Karniadakis et al.[''! on boundary conditions for
pressure on solid boundaries where velocity vanishes,

2 __ 2, yx(vxV), (11)
on Re

where n is the unit vector normal to the wall.

In this study, a staggered grid, which is uni-
formly spaced in the circumferential direction and is
exponentially stretched in the radial direction, is em-
ployed for the discretization of the governing equa-
tions. To approximate the space derivatives, a third-

(201 4nd a fourth-order

order biased-upwind scheme
central scheme approximations are used to discretize

the convective terms and viscous terms respectively.
3 Results and discussion

To accurately capture the shear layer instability
with much smaller length and time scales, a high grid
resolution is needed. We have taken numerical test
with several different grid numbers of 256 X 256, 512
X 256 and 512 X 384 in the radial () and circumfer-

ential (@) directions. The number of mesh points for
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the calculations was finally chosen as 512 X 384. The
computational domain was 30R in the radial direc-
tion, and time step was 0. 0005. The convergence
check with different grid sizes and time steps has been
extensively performed in our previous
work!!5 10 21241 " 1t has been determined that the
computed results are independent of the time steps

and the grid sizes.

To illustrate the computational procedure, only
some typical results are mainly discussed. The com-
putational global parameters (e.g. Strouhal number,
lift and drag coefficients) of circular cylinder flows are
evaluated. Fig. | shows the variations of the lift and
drag coefficients (i.e. C| and Cy,) versus time at Re
= 5000 and 8000. The corresponding mean values of
Cpyare 1.18 and 1.20 approximately, the Strouhal
numbers St ( = 2f,, here St is defined based on the
non-dimensional length of the cylinder diameter) are
0.22 and 0.21, and the root-mean-square (rms) val-
ues of the lift coefficients Cy ., are about 0. 78 and
0.79, respectively. It is found that those results are
in good agreement with some typical experimental da-
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Fig. 1. Variation of the lift and drag coefficients versus time. (a)

Re = 5000; (b) Re =8000.

Instantaneous streamlines and vorticity contours
are shown in Fig. 2 for Re = 8000 at ¢+ = 382 and
382.6. The flow patterns clearly show the develop-

ment of large-scale structures in the near wake and
secondary eddies near the wall. It can be identified
that the separated shear layers develop and undergo
significant amplification before the shear layer rolls up
to form the primary vortex. These small-scale eddies,

(9.10.17] * vesult from the

named mixing layer vortices
Tollmein-Schlichting instability occurring in the sepa-
rated mixing layers. The instability frequency is
shown in the following spectrum analysis. To demon-
strate the effect of the Reynolds number on the flow
patterns, Fig.3 shows the instantaneous streamlines
and vorticity contours at Re = 3000. By comparing
Fig. 2 with 3, it is seen that the formation of the
separated shear layers and the appearance of the mix-
ing layer vortices are clearly exhibited at higher
Reynolds numbers, which is consistent with experi-

190 who found

mental visualization of Williamson
that the shear layer instability would be developed and
amplified when the Reynolds number was higher than

a critical Reynolds number Re..

To identify the instability frequency, the spec-
tral analysis is performed on the numerically obtained
time-dependent signals of the pressure and velocity a-
long the separating mixing layer. In order to take ac-
curate evaluation of frequencies, the spectral resolu-
tion is equal to 0.001. In the wake of the cylinder,
vortex shedding with natural frequency f, occurs and
the instability of the separated shear layer with fre-
quency f, appears. As reported previously[(" 1 sup-
pressing or attenuating of the eddies can be achieved
by using a splitter plate, and the transition mecha-
nism leading to the frequency f, develops indepen-
dently on the vortex shedding mechanism at the fre-
quency f,. Hence it is reasonable to suppose that the
mechanism leading to f, is due to the generating of
the natural frequency in a free shear layer“’z‘%].

Here, some typical results of the spectral analy-
sis are discussed. Fig. 4 shows the spectrum power
density (PSD) of the pressure and the velocity at Re
=4000. The existence of peaks at frequencies f, and
£, is clearly shown in the spectra. Although the spec-
tra are calculated based on the pressure and the veloci-
ty, even at different locations, the peaks of f,and f,
as well as of the frequencies due to their interaction
are consistent with each other. Because of the non-
linear effect, the simultaneous interaction of f, and
f., which are incommensurate frequencies, leads to
generation of new predominant frequencies, such as
the superharmonic components of f, (i.e. 27, 3f.,
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Fig. 2. Instantaneous streamlines and vorticity contours at Re = 8000. (a) Streamlines at ¢+ = 382; (b) vorticity contours at t = 382;
(c) streamlines at 7 = 382.6; (d) vorticity contours at ¢ =382.6. Solid lines, positive values; dashed lines, negative values.

Fig. 3. Instantaneous streamlines and vorticity contours at Re = 3000. (a) Streamlines at r =382.4; (b) vorticity contours at ¢ = 382;
(c) streamlines at r =382.6; (d) vorticity contours at r =382.6.
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Fig. 4. Spectrum power density (PSD) of the pressure and the
velocity at Re =4000. (a) The pressure at (1.50, 1.10); (b) the
velocity at ( —=0.16, 1.07).

etc.), f.T fsand so on. The interaction is typical of
what happens in a free shear layer under the action of
an external forcing frequency, as reported in experi-
.[5,6,10] [1,2,17,18.26] [ (he

ments and computations

present case, the natural vortex shedding frequency
f. should be considered as the forcing frequency act-
ing upon the separated mixing layer with the frequen-
cy fi. The development of the mixing layer eddies is
strongly related with the instability frequency f, in
the same way as the peak at f, corresponds to the de-
velopment of the vortex shedding in the cylinder
wake. To further demonstrate the instability frequen-
cy and the interaction between the natural vortex
shedding and mixing layer eddies, Fig.5 shows the
spectra of the pressure at Re = 5000 and 8000. The
peaks of f, and f, as well as the frequencies due to
their interaction are clearly shown in the spectra. Due
to the vortex pairing in the mixing layer, which was
also found in previous work[17:18:26] e peak at the
subharmonic component f,/2 exists, and the peaks of
the interaction between f,/2 and f, appear.

172+

12

17

Fig. 5. Spectrum power density (PSD) of the pressure. (a) The
pressure at (0. 50, 1.10) for Re = 5000; (b) the pressure at
(0.24, 1.10) for Re =8000.

According to the spectra analysis, the vortex
shedding frequency f, and the instability frequency f,
can be accurately predicted. Table 1 lists the values of
the ratio f./fs,» which are compared with previous

(4-6, 10] By using a least-square

experimental results
analysis for the present calculated results, the varia-
tion of f,/ f, can be approximately expressed as f./ f,
~0.01976 Re® ® (shown in Fig.6). Thus we predict
a variation for the ratio f./f,~ Re®®, which is in
good agreement with a recent experimental measure-

067 and physical prediction of Re®’ by

[9,10

ment of Re
Prasad and Williamson 1. but somewhat different
from Re®® by Bloor'*! and Re’¥ by Wei and
Smith!s?,

Table 1. Values of the frequency-ratio £,/ f,

Re Present Bloor Wei and Smith Pr-as?d and
results  fi/ fs= i/ fo= Williamson
fdfs 0.095Re®* (Re/470)%  f./f.=0.023Re"

4000 6.10 6.01 6.44 6.09
5000 7.17 6.71 7.82 7.07
8000 9.88 8.50 11.76 9.69

10000 11.37 9.50 14.30 11.25
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Fig. 6. Variation of the ratio of the instability frequency and the

vortex shedding frequency with Reynolds number.

We include all the available experimental da-
[4=7.10.27.28] of the ratio f./ fs and arrive at the
variation displayed in Fig.7. The lines of the predic-

tions by Bloorm, Wei and Smith!®) and Prasad and
[10]

ta

Williamson' - are plotted in Fig. 7. It is clear that a
power law of the form Re®®, suggested by using the
present calculations, reasonably represents the varia-
tion of the ratio f./f. and is consistent with the re-
cent experimental measurement Re” %’ by Prasad and

Williamson!® 107

Although some numerical simula-
tions have been performed to deal with the separated
shear layer instability frequency[”’w], it is the first
time to establish that £,/ f;~ Re® % based on accurate
calculations with high mesh resolution and higher-or-

der spatial schemes.

10°F
L - - - -0.0235Re"” PR
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I ® Kourta et al. (1987)
B = Maekawa and Mizuno (1967)
[, ® Norberg (1987)
| - » Okamoto et al. (1987)
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10° R ——— . TR
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Re
Fig. 7. Variation of the ratio of the instability frequency and the
vortex shedding frequency including all the available experimental

data with Reynolds number.
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